= reddit

How We Protect Cat
Memes from DDoS

Spencer Koch Pratik Lotia
Principal Security Engineer - . Senior Security Engineer

it

= reddit

\
\ |
\
\ ,

—

Context Time iﬁ

What You'll Get From This Talk

e How Reddit thinks about ratelimiting architecture

Signals and their importance
Where to do ratelimiting
Other resiliency strategies

Lessons learned from 6 years of DDoS fights

Reddit’s Kind of a Big Deal...

Per week: 1.3 Trillion requests, 175 Petabytes (83% cached)

Service RPS pr— Bandwidth

The total amount of bandwidth served across all

The total number of CDN and Compute requests services in your account.
GrathL 275'(aggregated across your account.
it v
2008 Unit: Auto
° _——\——’_’_‘_
Ads Pixel 100k+ 26 Pl

Server Side 150k
Rendering .

Tue 0B

Tue Thu Eri

ri
Media 1200'(- e oo B Bandwidth @ | 172.25 PB

Where the DDoS Crew Came From...

2019 - evolved from a couple of OG
engineers duct taping things together

P 2021 - our first Transport team,
) getting more serious about defenses

teams; dedicated engineers focused
: on DDo$S mitigations and response

= reddit

Signals - Foundational

e Foundational:
o GeolP+
o User Agent
o Path, Query Params

e TLS Fingerprints:
o JA3/JA4 Calculations
o GREASE - incompatibility vs randomness
o Protocol sprawl

| https://browserleaks.com/tls - for more info
https://enqineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967/ - JA3 details
https://qithub.com/FoxlO-LLC/ja4/blob/main/technical details/JA4.md - JA4 details

JA4: TLS Client Fingerprint

Protocol: TCP = “t”, QUIC = “q”"

TLS version: 1.2= “12", 1.3 = “13”

SNI: SNI present = “d” (to domain), no SNI = “i” (to IP)
Number of cipher suites

Number of extensions

First ALPN value (00 if no ALPN)

JA4: 113d1516h2_8daaf6152771_02713d6af862

Y

JA4_a JA4_b JA4_c

Le ir Truncated SHA256 hash of the cipher suites, sorted |

—«e Truncated SHA256 hash of the extensions, sorted + signature
algorithms

https://blog.cloudflare.com/ja4-signals/

Signals - Intermediate

e Request Header Fingerprints
o Order, casing, and presence of headers
o Must be done at receiving proxy before munging
o Fastly - fastly info.oh fingerprint

o Cloudflare - request. cf?.requestHeaderNames

https://privacycheck.sec.lrz.de/passive/fp hs/fp header signature.php - RHS info

Signals - Intermediate

Request Example (Chrome)

Host: reddit.local

X-Forwarded-For: 192.168.56.1

Connection: close

Content-Length: 295

Accept: application/json, text/javascript, */*; q=0.01

Origin: https://reddit.local

X-Requested-With: XMLHttpRequest

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10 11 2) AppleWebKit/537.36 (KHTML, like Ge
Content-Type: application/x-www-form-urlencoded; charset=UTF-8

Referer: https://reddit.local/new/

Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.8

Cookie: loid=ajOuPPBsarNtdho6iK; loidcreated=2016-03-03T05%3A09%3A08.565Z; reddit session=53%2
DNT: 1

X-Forwarded-Proto: https

request header signature': 'Am:GX:K6:AcC:AT:M9:Gj:A6:Af:Az:AQ:AR:Ag:Kv:CB

Signals - Advanced

e Behavioral Fingerprinting

O

O

O

Network request timings

Analytical events fired or missing

Cookies, JWT presence and validation

Login flow or “expected” order of operations

CAPTCHA or “someone else’s model”

= reddit

Ratelimit

' 4

Where to Ratelimit?

e Leave Layer 3/ 4 attacks to internet / cloud providers

e Difference between Edge and Application layer

o Edge:
m Cheaper, but lacks context of the app
m User session, login state, limited business logic

o Application:
m More sophisticated logic and enriched data
m Expensive as your compute does the work

Where to Ratelimit?

e Both need a KV store
o Do you need more control over behavior?
o Difficulty of flushing / unsetting?
o Programmatic interactions?

e How to handle eventual consistency?
o Consistent routing based on geo / session / stickiness
o Circular hash ring algorithms R

| https://dev.to/mochafreddo/nginx-generic-hash-load-balancing-a-comprehensive-guide-3bca - nginx hashing primer

Where to Ratelimit?

e Routing architecture principles:

o “Reasonable” domain carve outs: media vs app split,
chat vs main site, modmail

o Cache where you can

o Isolate workloads with specific purpose

e Gotta use both!

similar construct...

Regional ClusterJ

ratelimit

—%[Fastl(/ POP l AWS S3 Media
Bucket

\L \ AWS us-east-1
i —9-[AWS NLB J
(BigQuery Logq [wothership j

ratelimit

authz / ratelimit
Traffic Sve
Session Svej Envoy @[J
L =

edge
context XDS

Self Hosted l Contour)

Redis
® ratelimit @L Sve %\ ﬁontend Sve)

=P
Simplified Reddit (=l

= reddit

¥
Ratelimitinc

Edge Ratelimiting

“) on
g

l 4

e Fastly’s Edge Rate Limiting 'ng |
o Two KV stores:
m penaltybox: a TTL for naughty elements
m ratecounter: counter for observed hits
o You determine what element to track (IP, TLS, etc.)
o Edge dictionaries to control configurables (request
rate, exclusions)

https:/www.fastly.com/documentation/quides/concepts/rate-limiting - Fastly Edge Rate Limiter (ERL)

sub ip_rate_limit_run {
declare local var.ip_ratelimit_exceeded BOOL;
declare local var.window INTEGER;
declare local var.window_limit INTEGER;
declare local var.increment INTEGER;
declare local var.key STRING;

Defaults (for comparison) with the TLS rate limiter.

set var.key = req.http.CDN-Client-IP; Example
Fastly

set var.increment = 1;
set var.window = 10;
set var.window_limit = 15; Construction
set var.ip_ratelimit_exceeded = ratelimit.check_rate(
var.key,
ip_counter_10s,

var.increment, # Increment.

3

var.window, Sample window (in seconds)
var.window_limit, # Limit in RPS
ip_pbox,

2m);

Edge Ratelimiting

e Cloudflare

o WAF ratelimit rules - precanned and Enterprise only J
o Workers - use a KV and do it yourself

o Don’t forget your logging

| Il - reddit-synthetic-code & x—-reddit-synthetic-reason

m 429 is extremely terse signal to engineers

| https://developers.cloudflare.com/waf/rate-limiting-rules/ - WAF rules

Edge Ratelimiting

e Series of band-pass filters with decreasing rate values:
IPs>TLS—>pools->recaptcha

e Weaknesses at Edge:

O

O

O

CGNAT, shared IP blocks, TLS by user agent
Requires tuning - approved crawlers, third parties
Country+ASN reputation scoring or crowd-level
heuristics? Depends on your business model
Collateral damage will happen! Revert fast

. Regional Clusterj o
ratelimit ~ similar construct...

»

—9[Fastly POP I 5 AWS S3 Media l\
Bucket ~

\L \ [ratelimit e
[G s Mj—%[AwS NLB J
(BigQuery Logq wothership

authz / ratelimit
Traffic Sve
Session Svcj Envoy @(J
L =
edge
context

XDs

Self Hosted \[Contour)
Redis

® ratelimit @L Sve %\ ﬁonteno‘ Sve \

(o) | G
Edge Ratelimiting), (),

= reddit

Application
Ratelimitinc

Application Ratelimiting

e FIRST: Common library for ratelimiting
o Pick an algorithm and provide guidance to your
devs!
o Sliding window algorithm with Redis TTL
o Redis - common, cheap, make it easy for devs to use

(how f%stAc“ocl)JVLVg s uérangigl do t‘%ﬁak %gsgern%tlg%soname multiplier)

| https:/aithub.com/reddit/baseplate.py/blob/develop/baseplate/lib/ratelimit/ratelimit.py - Reddit’s implementation

Application Ratelimiting

e Best for: WLW
o “Per user, per endpoint” logic

o OAuth ratelimits per client ID

e API route handling (front) vs datastore execution (back)?
e Square wave signals for abuse detection
e World wide Reddit and global state:

o Login /UGC endpoints - slower calls to a global state
o Mutating endpoints - POP / regional state

ratelimit

Regional Cluster J

—%[Fo\stl(/ POP \ AWS S3 Media
Bucket

RN

AWS us-east-1
(BigQuery Logq wothership

)

similar construct...

ratelimit

AwWS NLB J

authz

[Session Svaj
———>(

Self Hosted
Redis q
® ratelimit ~
»

[Post Sve)@‘

App Ratelimiting

/ ratelimit ~

n

»

Envoy @(Traffic Sve J

edge
context
@L Sve %\ ﬁontend Sve

e
=

_)

XDs

I Contour)

= reddit

Resiliency

Technic

Resiliency Techniques

o Get Observability!

o Customized web logs with request metadata for
modeling / triage

sub generate bq log {

set resp.http.json generate bq json = "{ "

if(std.strlen(req.request) > 0, "%22" + "req request" + "%22:%22" + json.escape(req.request) + "%22", "")

if(std.strlen(req.service id) > 0, ",%22" + "req service id" + "%22:%22" + json.escape(req.service id) + "%22", "")

if(std.strlen(req.backend.name) > 0, ",%22" + "req backend" + "%22:%22" + json.escape(req.backend.name) + "%22", "")

if(std.strlen(client.ip) > 0, ",%22" + "client ip" + "%22:%22" + json.escape(client.ip) + "%22", "")

",%22" + "client asn" + "%22:" + client.as.number

",%22" + "req _restarts" + "%22:" + req.restarts

if(std.strlen(server.datacenter) > 0, ",%22" + "server datacenter" + "%22:%22" + json.escape(server.datacenter) + "%22", "")

if(std.strlen(fastly info.state) > 0, ",%22" + "fastly info state" + "%22:%22" + json.escape(fastly info.state) + "%22", "")

if(std.strlen(resp.response) > 0, ",%22" + "resp response" + "%22:%22" + json.escape(resp.response) + "%22", "")

",%22" + "resp status" + "%22:" + resp.status

",%22" + "time elapsed msec" + "%22:" + time.elapsed.msec

",%22" + "time_end msec" + "%22:" + time.end.msec

" °22" + "req_bytes read" + "%22:" + req.bytes read

",%22" + "resp bytes written" + "%22:" + resp.bytes written

",%22" + "resp body bytes written" + "%22:" + resp.body bytes written

if(std.strlen(req.http.Host) > 0, ",%22" + "req http host" + "%22:%22" + json.escape(req.http.Host) + "%22", "")
f(std.strlen(req.url) > 0, ",%22" + "req url" + "%22:%22" + json.escape(req.url) + "%22", "")
f(resp.http.bg-logging-skip-field:req url path,"",if(std.strlen(req.url.path) > 0, ",%22" + "req url path" + "%22:%22" + json.escape(req.url.path) + "%22", ""))
f(resp.http.bg-logging-skip-field:req url qgs,"",if(std.strlen(req.url.qs) > 0, ",%22" + "req url qs" + "%22:%22" + json.escape(req.url.qgs) + "%22", ""))
f(std.strlen(req.xid) > 0, ",%22" + "req xid" + "%22:%22" + json.escape(req.xid) + "%22", "")
f(std.strlen(req.method) > 0, ",%22" + ”req method" + "%22:%22" + json.escape(req.method) + "%22", "")
f(std.strlen(substr(req.digest, 0, 16)) > ",%22" + "req _cache digest" + "%22:%22" + json.escape(substr(req.digest, 0, 16)) + "%22", "")
f(std.strlen(req.http.CDN-Client-IP) > 0, ",%22" + "req http cdn client ip" + "%22:%22" + json.escape(req.http.CDN-Client-IP) + "%22", "")

if(req.http.CDN-Client-IP && req.http.CDN- Cllent IP ~ "~([0-9]{1,3}\.[0-91{1,3}\.[0-9]1{1,3}\.)[0-9]{1,3}|"([a-fO-9:]+:)([a-fB-9]1*:){4}",",%22" + "req_http cdn_client
if(std.strlen(req.http.CDN-Org-Name) > 0, ",%22" + "req http cdn org name" + "%22:%22" + json.escape(req.http.CDN-Org-Name) + "%22", "")
f(std.strlen(req.http.CDN-Proxy-Description) > 0, ",%22" + "req http cdn proxy description" + "%22:%22" + json.escape(req.http.CDN-Proxy-Description) + "%22", "")
f(std.strlen(req.http.CDN-Proxy-Type) > 0, ",%22" + "req http cdn proxy type" + "%22:%22" + json.escape(req.http.CDN-Proxy-Type) + "%22", "")
f(std.strlen(req.http.X-reddit—synthetic—code) > 0, ",%22" + "req http x reddit synthetic code" + "%22:%22" + json.escape(req.http.X-reddit-synthetic-code) + "%22",
f(std.strlen(req.http.X-reddit-synthetic-reason) > 0, ",%22" + "req http x reddit synthetic reason" + "%22:%22" + json.escape(req.http.X-reddit-synthetic-reason) + "
f(std.strlen(req.http.X-reddit-pool-reason) > 0, ",%22" + "req http x reddit pool reason" + "%22:%22" + json.escape(req.http.X-reddit-pool-reason) + "%22", "")
f(std.strlen(req.http.X-reddit-block-reason) > 0, ",%22" + "req http x reddit block reason" + "%22:%22" + json.escape(req.http.X-reddit-block-reason) + "%22", "")

(

f(req.

http.X-Reddit-Compression,",%22" + "req http x reddit compression" + "%22:" + json.escape(if(std.atoi(req.http.X-Reddit-Compression) != 1,"-1", "1")),"")

Resiliency Techniques

o Get Observability!
o Customized web logs with request metadata for
modeling / triage

o Unique UUIDs on each request
o Invest in tooling: Fastly terraform module for
logging, tportctl

Resiliency Techniques

e Drop impossible requests (bad verbs, paths, synthetics
to limit backend load)

e Session material validation at edge (JWT vs cookie)

e Resource pools

o “Slowlane” and “woahlane” on trusted signal

o Isolate degradation of service by request type / shape

Resiliency Techniques ~ ﬁ |
=1

e Make attacks more expensive for attackers:

o Tarpitting - increase response time, requires attacker
to have more concurrent port/request processing
which might limit their size of attack

o Response Bloat - best attacks in early Reddit were
simple GET requests that cost nothing. Make them
eat their network bandwidth at scale.

A

Resiliency Techniques

e Cookie Trampolining

o For brand new connections, add a
cookie to a redirect response and
see if client follows it

o Expected cookie not returned that
should have had a request already?

o Good for blocking dumb scrapers /
clients

similar construct...

ﬁ Regional Cluster
~ ratelimit

>
—%[Fastly POP I AWS €3 Media
\L \ Bucket

ratelimit

AWS us-east-1
i —9-[AWS NLB J
(BigQuery Logq [wothership j

@[Traffic Sve J

l Contour)

authz / ratelimit
[Sesston Svcj Envoy
__—>(
edge
context XDS
Self Hosted
Redis
® ratelimit @L Sve %\ ﬁontend Sve)

Awsve) <
Resiliency *# D D

Lessons Learned

e Want it done right, do/staff it yourself
e You dont need a WAF

e Expect cat and mouse

e Start with largest needles

e Want more insight? Buy votes

= reddit

WhAt AbOuT WAFS?!

e Not a great fit for Reddit - too many false positives, too
many edge cases

o HTML or SWE topics would trigger
e Impacts performance, latency, and cost at our RPS scale
e Better do it ourselves since we know our traffic patterns

e . J - Trade WAF for better appsec hygiene

= reddit

*

Made Possible with Contributions By:

Shadi Altarsha Sotiris Nanopoulos

Justin Ely Sean Rees

Clayton Gonsalves Chris Schomaker

Jason Harvey Hiram Silvey -
. W

Brian Landers \

Udgeetha Mallampalli |
|

