
How We Protect Cat
Memes from DDoS

Spencer Koch
Principal Security Engineer

Pratik Lotia
Senior Security Engineer

Context Time

3

What You’ll Get From This Talk
● How Reddit thinks about ratelimiting architecture

● Signals and their importance

● Where to do ratelimiting

● Other resiliency strategies

● Lessons learned from 6 years of DDoS fights

4

Reddit’s Kind of a Big Deal…
Per week: 1.3 Trillion requests, 175 Petabytes (83% cached)

Service RPS

GraphQL 275k

Ads Pixel 100k+

Server Side
Rendering

150k

Media 1200k

5

Where the DDoS Crew Came From…
2019 - evolved from a couple of OG

engineers duct taping things together

2021 - our first Transport team,
getting more serious about defenses

2025 - now both Transport and Traffic
teams; dedicated engineers focused
on DDoS mitigations and response

Signals

Signals - Foundational
● Foundational:

○ GeoIP+
○ User Agent
○ Path, Query Params

https://browserleaks.com/tls - for more info
https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967/ - JA3 details
https://github.com/FoxIO-LLC/ja4/blob/main/technical_details/JA4.md - JA4 details

● TLS Fingerprints:
○ JA3 / JA4 Calculations
○ GREASE - incompatibility vs randomness
○ Protocol sprawl

https://blog.cloudflare.com/ja4-signals/

Signals - Intermediate

● Request Header Fingerprints

○ Order, casing, and presence of headers

○ Must be done at receiving proxy before munging

○ Fastly - fastly_info.oh_fingerprint

○ Cloudflare - request.cf?.requestHeaderNames

https://privacycheck.sec.lrz.de/passive/fp_hs/fp_header_signature.php - RHS info

Signals - Intermediate

request_header_signature': 'Am:GX:K6:Ac:AT:M9:Gj:A6:Af:Az:AQ:AR:Ag:Kv:CB

Signals - Advanced

● Behavioral Fingerprinting

○ Network request timings

○ Analytical events fired or missing

○ Cookies, JWT presence and validation

○ Login flow or “expected” order of operations

○ CAPTCHA or “someone else’s model”

Where to
Ratelimit

Where to Ratelimit?
● Leave Layer 3 / 4 attacks to internet / cloud providers

● Difference between Edge and Application layer
○ Edge:

■ Cheaper, but lacks context of the app
■ User session, login state, limited business logic

○ Application:
■ More sophisticated logic and enriched data
■ Expensive as your compute does the work

Where to Ratelimit?
● Both need a KV store

○ Do you need more control over behavior?
○ Difficulty of flushing / unsetting?
○ Programmatic interactions?

● How to handle eventual consistency?
○ Consistent routing based on geo / session / stickiness
○ Circular hash ring algorithms

https://dev.to/mochafreddo/nginx-generic-hash-load-balancing-a-comprehensive-guide-3bca - nginx hashing primer

Where to Ratelimit?
● Routing architecture principles:

○ “Reasonable” domain carve outs: media vs app split,
chat vs main site, modmail

○ Cache where you can
○ Isolate workloads with specific purpose

● Gotta use both!

Simplified Reddit

Edge
Ratelimiting

Edge Ratelimiting
● Fastly’s Edge Rate Limiting

○ Two KV stores:
■ penaltybox: a TTL for naughty elements
■ ratecounter: counter for observed hits

○ You determine what element to track (IP, TLS, etc.)
○ Edge dictionaries to control configurables (request

rate, exclusions)

https://www.fastly.com/documentation/guides/concepts/rate-limiting - Fastly Edge Rate Limiter (ERL)

Example
Fastly
Construction

Edge Ratelimiting
● Cloudflare

○ WAF ratelimit rules - precanned and Enterprise only
○ Workers - use a KV and do it yourself
○ Don’t forget your logging
■ X-reddit-synthetic-code & x-reddit-synthetic-reason

■ 429 is extremely terse signal to engineers

https://developers.cloudflare.com/waf/rate-limiting-rules/ - WAF rules

Edge Ratelimiting
● Series of band-pass filters with decreasing rate values:

IPs→TLS→pools→recaptcha

● Weaknesses at Edge:
○ CGNAT, shared IP blocks, TLS by user agent
○ Requires tuning - approved crawlers, third parties
○ Country+ASN reputation scoring or crowd-level

heuristics? Depends on your business model
○ Collateral damage will happen! Revert fast

Edge Ratelimiting

Application
Ratelimiting

● FIRST: Common library for ratelimiting
○ Pick an algorithm and provide guidance to your

devs!
○ Sliding window algorithm with Redis TTL
○ Redis - common, cheap, make it easy for devs to use
○ “Allowance” and “interval” selection:

Application Ratelimiting

https://github.com/reddit/baseplate.py/blob/develop/baseplate/lib/ratelimit/ratelimit.py - Reddit’s implementation

(how fast could a human do it) x (some reasonable multiplier)

Application Ratelimiting

● Best for:
○ “Per user, per endpoint” logic
○ OAuth ratelimits per client ID

● API route handling (front) vs datastore execution (back)?
● Square wave signals for abuse detection

● World wide Reddit and global state:
○ Login / UGC endpoints - slower calls to a global state
○ Mutating endpoints - POP / regional state

App Ratelimiting

Resiliency
Techniques

Resiliency Techniques

● Get Observability!
○ Customized web logs with request metadata for

modeling / triage

Resiliency Techniques

● Get Observability!
○ Customized web logs with request metadata for

modeling / triage

○ Unique UUIDs on each request
○ Invest in tooling: Fastly terraform module for

logging, tportctl

Resiliency Techniques

● Drop impossible requests (bad verbs, paths, synthetics
to limit backend load)

● Session material validation at edge (JWT vs cookie)

● Resource pools

○ “Slowlane” and “woahlane” on trusted signal

○ Isolate degradation of service by request type / shape

Resiliency Techniques

● Make attacks more expensive for attackers:

○ Tarpitting - increase response time, requires attacker
to have more concurrent port/request processing
which might limit their size of attack

○ Response Bloat - best attacks in early Reddit were
simple GET requests that cost nothing. Make them
eat their network bandwidth at scale.

Resiliency Techniques

● Cookie Trampolining
○ For brand new connections, add a

cookie to a redirect response and
see if client follows it

○ Expected cookie not returned that
should have had a request already?

○ Good for blocking dumb scrapers /
clients

Resiliency

Lessons Learned

● Want it done right, do/staff it yourself

● You don’t need a WAF

● Expect cat and mouse

● Start with largest needles

● Want more insight? Buy votes

WAFS?!

WhAt AbOuT WAFS?!
● Not a great fit for Reddit - too many false positives, too

many edge cases

○ HTML or SWE topics would trigger

● Impacts performance, latency, and cost at our RPS scale
● Better do it ourselves since we know our traffic patterns

● 🌶 - Trade WAF for better appsec hygiene

Thanks

Made Possible with Contributions By:

Shadi Altarsha

Justin Ely

Clayton Gonsalves

Jason Harvey

Brian Landers

Udgeetha Mallampalli

Sotiris Nanopoulos

Sean Rees

Chris Schomaker

Hiram Silvey

